
JOP: A Java Optimized Processor
for Embedded Real-Time Systems

Martin Schöberl
University of Technology Vienna,

Austria

Embedded Java Systems Java Optimized Processor 2

Overview

Motivation
Related work
JOP architecture
WCET Analysis
Results
Conclusions, future work
Demo

Embedded Java Systems Java Optimized Processor 3

Embedded Systems

An embedded system is a computer
systems that is part of a larger system
Examples

Washing machine
Car engine control
Mobile phone

Embedded Java Systems Java Optimized Processor 4

Real-Time Systems

A definition by John A. Stankovic:

In real-time computing the
correctness of the system depends
not only on the logical result of the
computation but also on the time at

which the result is produced.

Embedded Java Systems Java Optimized Processor 5

Real-Time Systems

Imagine a car accident
What happens when the airbag is fired too
late?
Even one ms too late is too late!

Timing is an important property
Conservative programming styles

Embedded Java Systems Java Optimized Processor 6

RT System Properties

Often safety critical
Execution time has to be known

Analyzable system
Application software
Scheduling
Hardware properties

Worst case execution time (WCET)

Embedded Java Systems Java Optimized Processor 7

Issues with COTS

COTS are for average case performance
Make the common case fast
Very complex to analyze WCET

Pipeline
Cache
Multiple execution units

Embedded Java Systems Java Optimized Processor 8

The Idea

Build a processor for RT System
Optimize for the worst case

Design philosophy
Only WCET analyzable features

No unbound pipeline effects
New cache structure

Shall not be slow

Embedded Java Systems Java Optimized Processor 9

Related Work

picoJava
SUN, never released

aJile JEMCore
Available, RTSJ, two versions

Komodo
Multithreaded Java processor

FemtoJava
Application specific processor

Embedded Java Systems Java Optimized Processor 10

JOP Architecture

Overview
Microcode
Processor pipeline
An efficient stack machine
Instruction cache

Embedded Java Systems Java Optimized Processor 11

JOP Block Diagram

Embedded Java Systems Java Optimized Processor 12

JVM Bytecode Issue

Simple and complex instruction mix
No bytecodes for native functions
Common solution (e.g. in picoJava):

Implement a subset of the bytecodes
SW trap on complex instructions
Overhead for the trap – 16 to 926 cycles
Additional instructions (115!)

Embedded Java Systems Java Optimized Processor 13

JOP Solution

Translation to microcode in hardware
Additional pipeline stage
No overhead for complex bytecodes

1 to 1 mapping results in single cycle
execution
Microcode sequence for more complex
bytecodes

Bytecodes can be implemented in Java

Embedded Java Systems Java Optimized Processor 14

Microcode

Stack-oriented
Compact
Constant length
Single cycle
Low-level HW
access

An example

dup: dup nxt // 1 to 1 mapping

// a and b are scratch variables

// for the JVM code.

dup_x1: stm a // save TOS

stm b // and TOS−1

ldm a // duplicate TOS

ldm b // restore TOS−1

ldm a nxt // restore TOS

// and fetch next bytecode

Embedded Java Systems Java Optimized Processor 15

Processor Pipeline

Embedded Java Systems Java Optimized Processor 16

An Efficient Stack Machine

JVM stack is a logical stack
Frame for return information
Local variable area
Operand stack

Argument-passing regulates the layout
Operand stack and local variables need
caching

Embedded Java Systems Java Optimized Processor 17

Stack Access

Stack operation
Read TOS and TOS-1
Execute
Write back TOS

Variable load
Read from deeper stack location
Write into TOS

Variable store
Read TOS
Write into deeper stack location

Embedded Java Systems Java Optimized Processor 18

Two-Level Stack Cache

Dual read only from TOS and
TOS-1
Two register (A/B)
Dual-port memory
Simpler Pipeline
No forwarding logic

Instruction fetch
Instruction decode
Execute, load or store

Embedded Java Systems Java Optimized Processor 19

JVM Properties

Short methods
Maximum method size is restricted
No branches out of or into a method
Only relative branches

Embedded Java Systems Java Optimized Processor 20

Proposed Cache Solution

Full method cached
Cache fill on call and return

Cache misses only at these bytecodes

Relative addressing
No address translation necessary

No fast tag memory
Simpler WCET analysis

Embedded Java Systems Java Optimized Processor 21

Architecture Summary

Microcode
1+3 stage pipeline
Two-level stack cache
Method cache

The JVM is a CISC stack architecture,
whereas JOP is a RISC stack architecture.

Embedded Java Systems Java Optimized Processor 22

WCET Analysis

WCET has to be known
Needed for schedulability analysis
Measurement usually not possible

Would require test of all possible cases

Static analysis
Theory is mature
Low-level analysis is the issue

Embedded Java Systems Java Optimized Processor 23

WCET Analysis

Path analysis
Low-level analysis (bytecodes)
Global low-level analysis
WCET Calculation

Embedded Java Systems Java Optimized Processor 24

WCET Analysis for JOP

Simple low-level analysis
Bytecodes are independent

No shared state
No timing anomalies

Bytecode timing is known and
documented
Simpler caches

Embedded Java Systems Java Optimized Processor 25

WCET Tool

Execution time of basic blocks
Annotated loop bounds
ILP problem solved
Simple cache analysis included

Only two block cache in loops
Will be extended

Embedded Java Systems Java Optimized Processor 26

Results

Size
Compared to soft-core processors

General performance
Application benchmark (KFL & UDP/IP)
Various Java systems

Embedded Java Systems Java Optimized Processor 27

Size of FPGA processors

1195.52923NIOS
4?2000FemtoJava

33/4?2600Komodo
4013400Lightfoot
1013.251831JOP typ.
983.251077JOP min.

(MHz)(KB)(LC)
fmaxMemoryResourcesProcessor

Embedded Java Systems Java Optimized Processor 28

Application Benchmark

1

10

100

1000

10000

100000

1000000

JO
P

leJ
OS

TIN
I

Kom
od

o

JS
tam

p

SaJ
e

EJC

Sun
 jv

m gc
j

Xint
Pr

ef
or

m
an

ce
 [i

te
ra

tio
n/

s]

Embedded Java Systems Java Optimized Processor 29

Applications

Kippfahrleitung
Distributed motor control

ÖBB
Vereinfachtes Zugleitsystem
GPS, GPRS, supervision

TeleAlarm
Remote tele-control
Data logging
Automation

Embedded Java Systems Java Optimized Processor 30

JOP in Research
University of Lund, SE

Application specific hardware (Java->VHDL)
Hardware garbage collector

Technical University Graz, AT
HW accelerator for encryption

University of York, GB
Javamen – HW for real-time systems

Institute of Informatics at CBS, DK
Real-time GC
Embedded RT Machine Learning

Embedded Java Systems Java Optimized Processor 31

JOP for Teaching
Easy access – open-source

Computer architecture
Embedded systems

UT Vienna
JVM in hardware course
Digital signal processing lab

CBS
Distributed data mining (WS 2005)
Very small information systems (SS 2006)

Wikiversity

Embedded Java Systems Java Optimized Processor 32

Conclusions

Real-time Java processor
Exactly known execution time of the BCs
Time-predictable method cache
Simple real-time profile

Resource-constrained processor
RISC stack architecture
Efficient stack cache
Flexible architecture

Embedded Java Systems Java Optimized Processor 33

Future Work

Real-time garbage collector
Instruction cache WC analysis
Hardware accelerator
Multiprocessor JVM
Java computer

Embedded Java Systems Java Optimized Processor 34

More Information

Two pages short paper
JOP Thesis and source

http://www.jopdesign.com/thesis/index.jsp
http://www.jopdesign.com/download.jsp

Various papers
http://www.jopdesign.com/docu.jsp

