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Embedded Systems

An embedded system is a computer 
systems that is part of a larger system
Examples

Washing machine
Car engine control
Mobile phone
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Real-Time Systems

A definition by John A. Stankovic:

In real-time computing the 
correctness of the system depends 
not only on the logical result of the 
computation but also on the time at 

which the result is produced.
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Real-Time Systems

Imagine a car accident
What happens when the airbag is fired too 
late?
Even one ms too late is too late!

Timing is an important property
Conservative programming styles



Embedded Java Systems Java Optimized Processor 6

RT System Properties

Often safety critical
Execution time has to be known

Analyzable system
Application software
Scheduling
Hardware properties

Worst case execution time (WCET)
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Issues with COTS

COTS are for average case performance
Make the common case fast
Very complex to analyze WCET

Pipeline
Cache
Multiple execution units
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The Idea

Build a processor for RT System
Optimize for the worst case

Design philosophy
Only WCET analyzable features

No unbound pipeline effects
New cache structure

Shall not be slow
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Related Work

picoJava
SUN, never released

aJile JEMCore
Available, RTSJ, two versions

Komodo
Multithreaded Java processor

FemtoJava
Application specific processor
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JOP Architecture

Overview
Microcode
Processor pipeline
An efficient stack machine
Instruction cache
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JOP Block Diagram
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JVM Bytecode Issue

Simple and complex instruction mix
No bytecodes for native functions
Common solution (e.g. in picoJava):

Implement a subset of the bytecodes
SW trap on complex instructions
Overhead for the trap – 16 to 926 cycles
Additional instructions (115!)
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JOP Solution

Translation to microcode in hardware
Additional pipeline stage
No overhead for complex bytecodes

1 to 1 mapping results in single cycle 
execution
Microcode sequence for more complex 
bytecodes

Bytecodes can be implemented in Java
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Microcode

Stack-oriented
Compact
Constant length
Single cycle
Low-level HW 
access

An example

dup: dup nxt // 1 to 1 mapping

// a and b are scratch variables

// for the JVM code.

dup_x1: stm a     // save TOS

stm b     // and TOS−1

ldm a     // duplicate TOS

ldm b     // restore TOS−1

ldm a nxt // restore TOS

// and fetch next bytecode
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Processor Pipeline
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An Efficient Stack Machine

JVM stack is a logical stack
Frame for return information
Local variable area
Operand stack

Argument-passing regulates the layout
Operand stack and local variables need 
caching
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Stack Access

Stack operation
Read TOS and TOS-1
Execute
Write back TOS

Variable load
Read from deeper stack location
Write into TOS

Variable store
Read TOS
Write into deeper stack location
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Two-Level Stack Cache

Dual read only from TOS and 
TOS-1
Two register (A/B)
Dual-port memory
Simpler Pipeline
No forwarding logic

Instruction fetch
Instruction decode
Execute, load or store
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JVM Properties

Short methods
Maximum method size is restricted
No branches out of or into a method
Only relative branches
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Proposed Cache Solution

Full method cached
Cache fill on call and return

Cache misses only at these bytecodes

Relative addressing
No address translation necessary

No fast tag memory
Simpler WCET analysis
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Architecture Summary

Microcode
1+3 stage pipeline
Two-level stack cache
Method cache

The JVM is a CISC stack architecture,
whereas JOP is a RISC stack architecture.
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WCET Analysis

WCET has to be known
Needed for schedulability analysis
Measurement usually not possible

Would require test of all possible cases

Static analysis
Theory is mature
Low-level analysis is the issue
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WCET Analysis

Path analysis
Low-level analysis (bytecodes)
Global low-level analysis
WCET Calculation
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WCET Analysis for JOP

Simple low-level analysis
Bytecodes are independent

No shared state
No timing anomalies

Bytecode timing is known and 
documented
Simpler caches
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WCET Tool

Execution time of basic blocks
Annotated loop bounds
ILP problem solved
Simple cache analysis included

Only two block cache in loops
Will be extended
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Results

Size
Compared to soft-core processors

General performance
Application benchmark (KFL & UDP/IP)
Various Java systems
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Size of FPGA processors
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Application Benchmark
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Applications

Kippfahrleitung
Distributed motor control

ÖBB
Vereinfachtes Zugleitsystem
GPS, GPRS, supervision

TeleAlarm
Remote tele-control
Data logging
Automation
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JOP in Research
University of Lund, SE

Application specific hardware (Java->VHDL)
Hardware garbage collector

Technical University Graz, AT
HW accelerator for encryption

University of York, GB
Javamen – HW for real-time systems

Institute of Informatics at CBS, DK
Real-time GC
Embedded RT Machine Learning
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JOP for Teaching
Easy access – open-source

Computer architecture
Embedded systems

UT Vienna
JVM in hardware course
Digital signal processing lab

CBS
Distributed data mining (WS 2005)
Very small information systems (SS 2006)

Wikiversity
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Conclusions

Real-time Java processor
Exactly known execution time of the BCs
Time-predictable method cache
Simple real-time profile

Resource-constrained processor
RISC stack architecture
Efficient stack cache
Flexible architecture
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Future Work

Real-time garbage collector
Instruction cache WC analysis
Hardware accelerator
Multiprocessor JVM
Java computer
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More Information

Two pages short paper
JOP Thesis and source

http://www.jopdesign.com/thesis/index.jsp
http://www.jopdesign.com/download.jsp

Various papers
http://www.jopdesign.com/docu.jsp


